Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Biomol Struct Dyn ; : 1-12, 2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: covidwho-2262183

RESUMEN

The SARS-CoV-2 spike (S) glycoprotein with its mobile receptor-binding domain (RBD), binds to the human ACE2 receptor and thus facilitates virus entry through low-pH-endosomal pathways. The high degree of SARS-CoV-2 mutability has raised concern among scientists and medical professionals because it created doubt about the effectiveness of drugs and vaccinations designed specifically for COVID-19. In this study, we used computational saturation mutagenesis approach, including structure-based free energy calculations to analyse the effects of the missense mutations on the SARS-CoV-2 S-RBD stability and the S-RBD binding affinity with ACE2 at three different pH (pH 4.5, pH 6.5, and pH 7.4). A total of 3705 mutations in the S-RBD protein were analyzed, and we discovered that most of these mutations destabilize the RBD protein. Specifically, residues G404, G431, G447, A475, and G526 were important for RBD protein stability. In addition, RBD residues Y449, Y489, Y495, Q498, and N487 were critical for the RBD-ACE2 interaction. Next, we found that the distribution of the mean stability changes and mean binding energy changes of RBD due to mutations at both serological and endosomal pH correlated well, indicating the similar effects of mutations. Overall, this computational analysis is useful for understanding the effects of missense mutations in SARS-CoV-2 pathogenesis at different pH.Communicated by Ramaswamy H. Sarma.

2.
Biotechnol Genet Eng Rev ; : 1-12, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2233080

RESUMEN

The SARS-CoV-2 lifecycle is dependent on the host metabolism machinery. It upregulates the PPARα and PPARγ genes in lipid metabolism, which supports the essential viral replication complex including lipid rafts and palmitoylation of viral protein. The use of PPAR ligands in SARS-CoV-2 infection may have positive effects by preventing cytokine storm and the ensuing inflammatory cascade. The inhibition of PPARα and PPARγ genes may alter the metabolism and may disrupt the lifecycle of SARS-CoV-2 and COVID-19 progression. In the present work, we have identified possible miRNAs targeting PPARα and PPARγ in search of modulators of PPARα and PPARγ genes expression. The identified miRNAs could possibly be viewed as new therapeutic targets against COVID-19 infection.

3.
Ethiop J Health Sci ; 32(6): 1083-1092, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: covidwho-2226023

RESUMEN

Background: The number of reports of menstrual changes after COVID-19 vaccination in the Saudi population is still unknown. Therefore, this study aimed to assess the effect of the COVID-19 vaccine(Pfizer, AstraZeneca, and Moderna) on the menstrual cycle among females in Saudi Arabia. Methods: This descriptive cross-sectional study was conducted in Saudi Arabia at Umm Al-Qura University (UQU) from August 2021 to February 2022. Data was collected through a previously validated online questionnaire. Results: A total of 2338 participants who received the first dose of the COVID-19 vaccine participated in this study; 1606 (68.7%) of them received the second dose in addition to the first. The mean age of the study participants was 35.4±9.5 years. No significant associations were found between the type of COVID-19 vaccine and the impact on the menstrual cycle, either for the first or second dose (P-values > 0.05). A significant association was found only between the first dose vaccination day and the impact on the menstrual cycle in the second question of "After receiving the COVID-19 vaccine, your next period was" (P-value ≤ 0.05). Significant associations were found between the second dose vaccination day and the impact on the menstrual cycle in the first and second questions of "After receiving the COVID-19 vaccine, your next period was", and "After receiving the first dose, your next period was," respectively (P-values ≤ 0.05). Conclusion: The study found a potential association between the COVID-19 vaccine and menstrual cycle irregularities, which could impact females' quality of life.

4.
Biotechnol Genet Eng Rev ; : 1-21, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: covidwho-2212332

RESUMEN

The ongoing COVID-19 spreads worldwide with the ability to evolve in diverse human populations. The nucleocapsid (N) protein is one of the mutational hotspots in the SARS-CoV-2 genome. The N protein is an abundant RNA-binding protein critical for viral genome packaging. It comprises two large domains including the N-terminal domain (NTD) and the C-terminal domain (CTD) linked by the centrally located linker region. Mutations in N protein have been reported to increase the severity of disease by modulating viral transmissibility, replication efficiency as well as virulence properties of the virus in different parts of the world. To study the effect of N protein missense mutations on protein stability, function, and pathogenicity, we analyzed 228 mutations from each domain of N protein. Further, we have studied the effect of mutations on local residual frustration changes in N protein. Out of 228 mutations, 11 mutations were predicted to be deleterious and destabilized. Among these mutations, R32C, R191C, and R203 M mutations fall into disordered regions and show significant change in frustration state. Overall, this work reveals that by altering the energetics and residual frustration, N protein mutations might affect the stability, function, and pathogenicity of the SARS-CoV-2.

5.
J Biomol Struct Dyn ; : 1-11, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: covidwho-2120918

RESUMEN

The COVID-19 outbreak brought on by the SARS-CoV-2 virus continued to infect a sizable population worldwide. The SARS-CoV-2 nucleocapsid (N) protein is the most conserved RNA-binding structural protein and is a desirable target because of its involvement in viral transcription and replication. Based on this aspect, this study focused to repurpose antiviral compounds approved or in development for treating COVID-19. The inhibitors chosen are either FDA-approved or are currently being studied in clinical trials against COVID-19. Initially, they were designed to target stress granules and other RNA biology. We have utilized structure-based molecular docking and all-atom molecular dynamics (MD) simulation approach to investigate in detail the binding energy and binding modes of the different anti-N inhibitors to N protein. The result showed that five drugs including Silmitasterib, Ninetanidinb, Ternatin, Luteolin, Fedratinib, PJ34, and Zotatafin were found interacting with RNA binding sites as well as to predicted protein interface with higher binding energy. Overall, drug binding increases the stability of the complex with maximum stability found in the order, Silmitasertib > PJ34 > Zotatatafin. In addition, the frustration changes due to drug binding brings a decrease in local frustration and this decrease is mainly observed in α-helix, ß3, ß5, and ß6 strands and are important for drug binding. Our in-silico data suggest that an effective interaction occurs for some of the tested drugs and prompt their further validation to reduce the rapid outspreading of SARS-CoV-2.Communicated by Ramaswamy H. Sarma.

6.
Curr Protein Pept Sci ; 23(7): 465-474, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1993661

RESUMEN

In Covid-19, the pathological effect of SARS-CoV-2 infection is arbitrated through direct viral toxicity, unusual immune response, endothelial dysfunction, deregulated renin-angiotensin system [RAS], and thrombo-inflammation, leading to acute lung injury (ALI), with a succession of acute respiratory distress syndrome (ARDS) in critical conditions. C1 esterase inhibitor (C1INH) is a protease inhibitor that inhibits the spontaneous activation of complement and contact systems and kinin pathway, clotting, and fibrinolytic systems. Therefore, targeting the complement system through activation of C1INH might be a novel therapeutic modality in the treatment of Covid-19. Therefore, this study aims to illustrate the potential nexus between C1INH and the pathophysiology of SARS-CoV-2 infection. C1INH is highly dysregulated in Covid-19 due to inflammatory and coagulation disorders. C1INH is up-regulated in Covid-19 and sepsis as an acute phase response, but this increase is insufficient to block the activated complement system. In addition, the C1INH serum level predicts the development of ARDS in Covid-19 patients, as its up-regulation is associated with the development of cytokine storm. In Covid-19, C1INH might be inhibited or dysregulated by SARS-CoV-2, leading to propagation of complement system activation with subsequent uncontrolled immunological stimulation due to activation of bradykinin and FXII with sequential activation of coagulation cascades and polymerization of fibrin. Thus, suppression of C1INH by SARS-CoV-2 infection leads to thrombosis and excessive inflammation due to uncontrolled activation of complements and contact systems.


Asunto(s)
COVID-19 , Proteína Inhibidora del Complemento C1 , Síndrome de Dificultad Respiratoria , Humanos , Proteína Inhibidora del Complemento C1/metabolismo , Esterasas , Inflamación , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA